A study on class of "Te・Me・Atama" in mathematics

Akihiro SUZUKI, Eiji KOBAYASHI

Abstract

"Te・Me・Atama" are the words for the hands, eyes, and head in Japanese. The paper explains

\[Te \rightarrow \text{hands} \rightarrow \text{Manipulative Understanding and Representation (dynamic)} \]
\[Me \rightarrow \text{eyes} \rightarrow \text{Illustrative Understanding and Representation (static)} \]
\[Atama \rightarrow \text{head} \rightarrow \text{Symbolic (including the numerical formula expression)} \]
\[\text{Understanding and Representation} \]

This paper establishes these principles as a means of mathematics learning instruction and suggests that they be widely utilized.

Key words: mathematics, manipulative, illustrative, symbolic, understanding, representation

I. はじめに
算数・数学科の授業のなかでは、教師と子どもの間で「ず・し・こ」「は・か・せ・どん」等の合言葉が用いられることがある。しかし、それはしばしば形骸化を生み、算数・数学科の学習指導に有用であるか疑問をもつことがある。
「て・め・あたま」は、平成23年に実施した本学「算数・数学科合宿授業研究会」において、本学名誉教授・柴田健治先生より教えていただいた言葉である。
この言葉も合言葉と言われるものかもしれないが、流布されている合言葉と違い、算数・数学科の学習指導として有効な方法であり、整理をし、有効に働く算数・数学科の学習指導の手だてとして確立し、広く活用されていくべきものであると考えた。ここに本稿の意図がある。
本稿では、まず筆者の考える「て・め・あたま」の意味を示す。次に「て・め・あたま」にかかわる先行研究を「て・め・あたま」の背景として示し、算数・数学科の学習指導において「て・め・あたま」を考えるよを示す。最後に「て・め・あたま」が相互に関係し合っている姿が見られる授業を実践例として示す。

II. て・め・あたまの意味
「て・め・あたま」は、手、目、頭の音である。そして、そこから連想される理解の方法ならびに表現の方法を示す言葉である。
本稿での「て・め・あたま」は、

て	⇒	手	⇒	操作による理解の方法、表現の方法（動的）
め	⇒	目	⇒	映像による理解の方法、表現の方法（静的）
あたま	⇒	頭	⇒	言語（数式表現を含む）による理解の方法、表現の方法
を意味するものである。
5年生の平均の問題で例を示す。

<table>
<thead>
<tr>
<th>火</th>
<th>水</th>
<th>木</th>
<th>金</th>
</tr>
</thead>
<tbody>
<tr>
<td>月曜日から金曜日までの5日間、5年生2組で図書館を利用した人数は、次のようでした。平均すると1日あたり何人が利用したといえるでしょう。（大日本図書 2012a）</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>曜日</th>
<th>月</th>
<th>火</th>
<th>水</th>
<th>木</th>
<th>金</th>
</tr>
</thead>
<tbody>
<tr>
<td>人数(人)</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

「て」の例としては、実際に子どもが並んだり、半具体物を用いたりの操作である（図1）。

図1 「て」の例

「め」の例としては、図に表したものである（図2）。「あたま」の例は数式表現である（図3）。

図2 「め」の例

図3 「あたま」の例

この「て・め・あたま」には相互の関係がある。「あたま」として2つの数式表現を示したが、その数式表現が表す「て」や「め」は何らかは大切な指導内容となっている。これについては後述する。

III. 「て・め・あたま」の背景

「て・め・あたま」を有効に働く算数・数学科の学習指導の手だてとして確立し、広く活用されていくものにしたいと考えるのは、理解ならびに表現を、操作、映像、言語とといった視点から捉えることが新しいことではなく、多くの研究が積み上げられてきているからである。

J. S. ブルーナー（1966）は、

・ある結果を達成するのに適切な一連の活動によるもの（活動的表象 enactive representation）
・ある概念を完全に定義づけることなしに、概念を表す一連の抽象的な心象や図式によるもの（映像的表象 iconic representation）
・命題を形づくったり変形したりする決まりや法則によって支配されるところからの象徴体系から

をあげ、EIS理論を展開した。

EIS理論は一般的な発達の原理を述べたもので、そのまま算数・数学の授業にあてはめるのは適切でないとして中原（1995）は、算数・数学教育の立場から、
・現実的表現（Realistic Representation）
実世界の状況、実物による表現、具体物や実物による実験などはここに含める。
・操作的表現（Manipulative Representation）
具体的な操作活動による表現、人為的加工、モデル化が行われている具体物、教具等による操作を施すことによる表現。
・図的表現（Illustrative Representation）
絵、図、グラフ等による表現。
・言語的表現（Linguistic Representation）
日本語、英語、中国語等、各国の日常言語を用いた表現、またはその省略的表現。
・記号的表現（Symbolic Representation）
数、文字、演算記号、関係記号等数学的記号を用いた表現。

の5つに分類をする。これに、EISに近いE1：現実的表現、E2：操作的表現、I：図形的表現、S：言語的表現、S2：記号的表現と記号化している。また第4章では分類された5つの中の、操作的表現、図的表現、記号的表現の3つを取り上げている。このことは、算数・数学科の学習指導において、「て・め・あたま」に相当するものがいかに重要であるかを示している。
また数学の発展過程を踏まえてみると、「て・め・あたま」に相当するものの相互の関係が大きく変わっていく例をあげることは容易である。伊藤（1994）は、「数記号で表現したもの（数記号表現）と絵や図で表現したもの（絵・図表表現）を関連付けることが考えられ、これにより両方の長所を取り込みいうことである。（中略）これによって数学は著しく進歩を遂げた。」と示している。
一方、理解としての「て・め・あたま」に関するものとして、笛井（2002）は、「算数・数学科指導者が求める授業」の中で「2 自分で考える力を育てる授業の工夫・改善」の内容として「クラスの子ども達全員が、それぞれ特長のいく方法で「わかる」ように」ということを立て、具体例を用いて＜まず具体物を使って＞＜次に図を使って＞＜そして式を使って＞と予め提示した。このように、それぞれの意図するところから個々の用語の違いや表現の違いはあるが、「て・め・あたま」は算数・数学科の指導において、古くて新しい重要なテーマであることが確認できる。

IV 算数・数学科の学習指導において『て・め・あたま』を考えるとき

ここでは、算数・数学科の学習指導において「て・め・あたま」を考えるときとして、次のことを見極める。

・「て・め・あたま」を考えることは、個々の子どもの理解の深化に役立つ。
・「て・め・あたま」を考えることは、クラス全体での練習を上げる、理解の深化には欠かせない。
・「て・め・あたま」を考えれば、自然と多様な考え方をしたことがある。
・「て・め・あたま」は、教材研究のよい視点である。
・「て・め・あたま」は、算数・数学的活動を考えるよい視点となる。

まず、今なぜ「て・め・あたま」を考える必要があるのかを考えたい。
新しい学習指導要領の完全実施に伴い、現在学校現場では「思考力・判断力・表現力」の学習指導が重視され、「表現力を育む」等のテーマで研究や研修が多くなされている。それ自体は大切なことであるが、そこで様相が「あたま」に偏りすぎてはいないかと感じることが多くある。そして、「て・め」を扱っていたら、もっとスムーズに、もっと深まるのある学習ができたのではないかと思う場面に出会うことがしばしばである。
参観した4年生の「小数÷整数」の授業で考える。提示された問題は、
7.2Lの牛乳を、3つの容器に等分します。1つ分は何Lでしょう。（大日本図書 2012b）
である。問題理解の場面では、考える見通しとして、図、数直線、式、筆算、0.1の幾つか分というものが、後子とも適は自分的方法で解くべきと。全体解決では、式、筆算、0.1の幾つか分という考えが発表された（図4）。教師は、図による発表を予想し準備をしていたが、発表されなかった。そして、3つの発表をもとに練り上げが行われた。

解法方法1

2.4	7.2は0.1の72分から
3	72/3を筆算でやって
0	24になる
1	小数点つけるば答えが
2	2.4Lになる

解法方法2

| 7.2は0.1の72分 |
6	72/3=24
12	0.1が24で2.4
12	答え2.4L

解法方法3

| 7.2÷3=2.4 |
| 0.1の24分 |
| 0.1で2.4L |
| 答え2.4L |

図4 3つの解決方法

ここまで小学校4年生が表現できることはとても素晴らしいこと、よく鍛えであると考える。しかし、この3つはすべて「あたま」である。そのため、その後の授業展開での議論の活発化や理解の深化を妨げたと感じた。

教科書は「あたま」ばかりだけでなく、ここで「て」と「め」があったらどうであったろう。

実際に7.2Lの牛乳を3つの容器に等分する作業をすることを考えてみよう。まず1Lを単位とするメモリを使って2Lずつ等分するだろう（図5）。この2が筆算の7の上にある2である。そして、次に残った1.2Lの3分を考えると、1Lより細かい単位、メモリが必要となる。これが0.1Lをもとにして考えることで、それによる4が筆算では2の次に出てくる。

「あたま」で出てくる0.1の72分は、確かに既習を活用したよい解決であるが、なぜ0.1なのか、割り切れないからどうするかが見えない。練り上げで筆算の仕方を考えるならば、「て」の操作の方が筆算に出てくる数そのものを使っている。0.1のメモリでもダメならば、次の0.01を使えばよいこともすぐに理解できるのではないだろうか。

つまり、「て」や「め」を考えることで、「あたま」の理解を補完することができるといえる。

これで留意したいことは、学習指導としては「て・め・あたま」に軽重がないようにしたいということである。

J.S. ブルーナーのEIS理論や笠井のくまず具体物を使って＞＞次に図を使って＞＞そして式を使って＞＞（　さん）のように順序性を考えることが意味をもつこともあるだろう。だが、教室にいる子ども達が想起したとき、学習指導として「て・め・あたま」軽重があるとは想わない。

「て」や「め」で考え、表現している子は、ときとして自分の方法を発表できないことがある。それは、「あたま」の表現が「て」や「め」の表現より上位にある、自分は下位のものしかできない。それを発表することを恐れてできない」と考えてしまう傾向があるからである。そのようなとき、教師は「て」や「め」の表現が、暗黙の理に軽視した指導をしてきたと反省すべきではないだろうか。すべての子どもがいきなり「あたま」で考えられるわけではない。「て」や「め」からでも考える子ども、自分のもっている武器で何とかしようと問題に取り組むことを育てたいものである。

逆に、「て」だから見いだせるものもある。「II、「て・め・あたま」の意味」で用いた平均の例について、教科書では問題の後に「人数や個数なども、平均では小数を使って表すことがあります。」と1行さりと書かれている。「あたま」だけならば「そうだね」で終わるだろうけど、「て」で活動し
た子どもにとっては「あの1人を小数にするってどういうこと」「なぜ人数を小数で表すの」という素朴であるが、平均を考える上で重要な疑問が生じるだろう。だから、「て」や「め」は「あたま」の補助としての役割だけではない。関数領域でいえば、「め」にあたるグラフと「あたま」である数式表現、そして「て」をいうべき表とが相互に関連していることは明らかである。

このように「て・め・あたま」を考えることは、個々の子どもの理解の深化に役立つこと、クラス全体での繰り上げ、理解の深化には欠かせないことは明らかである。

さらに、「あたま」で表現できている子には、別の方法として「て」や「め」による表現を指示して取り組ませ、「あたま」との関係を発表させると手だても考えられる。このことは、クラス全体で一つの問題解決に迫る問題解決型授業において是有効なことである。「授業を壊すのは進んでいる子である」という言葉があるが、そのような子どもに価値ある活動を提供することができる。そしてその子どもの活動を、クラス全体にもどして、クラス全員の共有のものとさせることで、「て・め・あたま」の誤った軽量も阻止することができると考える。

またこのように考えていくと、1つ1つ問題に対して「て・め・あたま」を考えるだけでなく、多様な考え方、多様な方法での解決への迫りとなることがわかる。

すべての重要な結果は、すぐにもと2通りの異なる方法で得るべきである。とりわけ重要な結果はいつもも本質的に異なる方法によって得るべきである。このような指導によって生徒達はすべての授業から解放されるであろう。

このようなE. H. ムアの言葉は、算数・数学教育においてよく知られている。「て・め・あたま」を考えることは、この精神に繋がると考えられる。

そして、「て・め・あたま」は教材研究のよい視点である。

教師自身が教材に対して「て・め・あたま」を考え、それに関連付けを考えれば、授業の見通しはより深いものになる。「今日は、子ども達にどんな活動をさせようか」「具体的物としてどのようなものを探したいだろう」「いろいろな図がかかるけど、広がりすぎないようにしたいなあ」「今日のキーワードは何にしようか」「式に出てくる数値は、操作や図のどこに現れているか」等々と次から次へと広がり、深まっていく。

そうした教材研究の上に立った授業であるのだから、必然子ども達によりよい算数・数学的活動を準備することができる。だから、「て・め・あたま」は算数・数学的活動を考えるよい視点となるといえる。

V. 「て・め・あたま」を意図した授業の実践例

「て・め・あたま」が相互に関係し合っている姿が見られる授業を実践例として示す。

授業者：小林英児（本学附属小学校教諭）　児童：本学附属小学校5年2組
日　時：2014年6月23日（月）第5校時
単　元：立体のかさの表し方を考えよう（大日本図書「楽しい教科書」5年生 p48～ の内容）
本　時：（1/12 時間）
ねらい：箱のかさをブロックのいくつ分で表す活動を通して、縦と横、高さにあたるブロックの個数が分かれれば箱のかさと同じブロックの数を分かることに気付くことができる。

授業展開

T：今日こんなものを準備してきたんです。（直方体模型を提示）
C：直方体
T：算数の言葉で表すことは難しいね。
C：直方体

問題提示において、「て」として使うことができる教科の1つを提示。「あたま」を意識して、算数・
T：どうして直方体だと思うか。
C：どう見ても直方体だと思う。
T：本当に直方体なら測らなくてはいけないところかもしれないけど、
 直方体です。
 なお、直方体を求めてください。「直方体の」板書)
T：「かさ」って分かりますか？
C：体積　C：量　C：水の量
 （板書に書き加え「直方体のかさ」とする）
T：（立方体の積み木を提示）
C：ビー玉　C：小っちゃい
T：立方体。これのごくごく分かっていると思う。
 （立方体は100個くらい。ちょっとあるんじゃない）
T：じゃあ、グループになって、これだけ（立方体）取りに来てください。
（相を並び替えて、4人、5人グループになる）
C：立方体は難しい。
T：立方体がほしいと言われるけど、1個だけでなくこれだけ用意
 したものです。
 このブロックいくつ分かということをはっきりしてほしいです。
 分かったら、ノートに、ノートにその道筋をちゃんと残るよう
 に、何をしたかを、忘れずに自分で言ったこととか
 思ったこととか、友達に言ったこととか、ノートに書いてお
 かないと、どんどんどんどんなくなってしまうからね。
 じゃあ、はじめましょう。
 （「ブロックはいくつ分か？」と板書）

（グループでの解決開始）
A：グループの活動（T、Cは板に書かれた中での会話）
・立方体の面の周りに立方体を並べる（図6）
・立方体の側面に立方体を積む
・立方体の1辺の長さを測る・・・・1cm
・ノートに記録　縦5cmで、横は8cmで、高さは？
T：これだけでわかるの？
C：やってみないとわからない
T：何をやってみるの
C：縦×横×高さ
・立方体の表面を立方体で敷き詰めを始める→底面をうめる
 ことができない
・どこを縦、横として計算してよいのか議論
・模様を縦にしてノートでの追究を始める
T：（立方体の並べ方）さっきと変わったね
C：これはないから
T：ふーむ
・立方体と同じ立方体を立方体で新たに作り始める
・立方体の側面に並べた図形と比べながら、縦、横、高さに
 おいて1列いるかどうか議論をしながら作図を進める
T：作業はストップして、ノートをまとめるにします。あと
 1分でまとめてね。
T：ストップ。
T：私はこうやりましたよ。私達のグループはこうしたよということを、どんどんつなげてお話をして行ってください。
じゃあ、お話ししてくれる人いますか。
C1：（直方体模型を使って）ここは（模）が5 cmで、ここが（模）が7 cmで、ここが（高さ）が4 cmでした。それで、この面積が7×5で35 cm²で、これ（高さ）が4 cmで、（立方体の1辺）が1 cmだったから、7×5×4で140でした。
T：伝わったか？
C：何人か挙手
T：Cさん、もう1回お願いして。
C2：（どうしていいか困っている）
T：（子どもが作業して作っていた模型の写真を電子黒板に写して（図7））これをよければ使っているよ。
C2：（前に出て、写真の図を示しながら）C１さんのグループは、ここ（模）が7 cmで、ここ（模）が5 cmで、ここ（高さ）が4 cmで、この面積が7×5で35 cm²で、ここが（高さ）が4辺あるので、4 cmでした。だから35×4にして140でした。
T：付け足しのある人。C 3さん。
（C 3が前に出て、黒板を使って説明をしようとしたので、TがC 3のノートを写真に撮り電子黒板に写す。（図8））
C3：私は、この四角が1つの積み木で、直方体のやつに四角をあわせたら、横が7 cmとなって、高さが4 cmになって、隅が5個になったから、これだけを求めるには、7×4で28になって、その28が5個あるから、28×5で140だった。
C：微妙な反応
T：誰か
C4：この部分の
T：どここの部分か分かった？
C4：この部分をひとかたまりとして表すと、まず7×4の28個のかたまりがここにあって、そのかたまりが5個あるから28×5をして140だと思います。
T：伝わったか？
今、C4さん達が言ってくれたことをノートにまとめてごらんよ。今何をいおうとしていたのかね。
C：各自ノートに書きこむ。
（機関指導の中で、C5を指名し板書させる。（図9））
C5：（板書）
T：黒板をみてください。
今C5さんが書いてくれたことは、今までC4さん達が言ってくれたことの説明として、あればいい？OK？ちょっとお話を聞いてみようか。それでお話ししてごらん。
C5：このかたまり（黒板の長方形）は、このかたまり（電子黒板の図の側面）のことで、このかたまりは5個あれば全部の立方体のかさになるから、それだったらこの面積を求めて、それが5倍になるから、それ×5すればいい。
T：説明が同じと言っていい？ちょっと手を挙げてみよう。
同じと言っていいよ。（C：多くの子ども挙手）
T：だめだよ。（C：挙手なし）
T：分かんないよ。（C：数名挙手）

め、ノートに記入する時間を確保。

図7
「て・め・あたま」についてもICTをうまく活用するとクラス全体で考えるためのよいツールになる。模型では、小さくどの部分について議論しているのか分からないが、「て」で作られた模型をカメラで写し電子黒板で示すと、教室の後ろからでも見ることができ、クラス全員が「て」と「め」と「あたま」を行ったり来たりできる。

図8
これは「め」を映し出したもので、先の写真とは意味が違う。「て」での説明よりも、必要な条件を取り出した「め」での説明の方がしやすいと判断していられる。

図9
「め」が見取図から投影図的なものへと変わっている。「め」とまとめてあるが、子ども達が考える「め」は1つではない。

—179—
T：オー、「分からないよ」いるね。なるほどね。
さっき言っていたことで、どうしても気になることがあるんだけど、ブロックの個数を聞いていないのに、何cm、何cmと長さを
いっていたじゃない。
長さと個数ってどんな関係があるの？
関係があるの？そもそもあるの？ないの？ グループの中でお
話してごらん。
C：グループで話し合い
Aグループではブロックを使って確認をし始める。ブロック
を並べ、定規で長さを測る。
T：ストップ。一生懸命お話ししていて、途中で困っているような
で、途中までお話ししてください。
（中略）
T：なるほど。じゃあさあ、「ノートに長さと個数は関係あるの」
というところまで赤で書いておいて。次は、そこからスタートし
ます。
ところできあ、今日の最初のブロックのいくつ分は解決できたか
の？
C：できた
T：それは確かにね。
C：たぶん。
T：だって、みんな140個と言っていったけど、そうじゃないよとい
うグループないの。ない、ある。分からないね。
本当に140個かどうか、C６さん（組み立てブロックを指さ
して）確かめさせて、それを数えておいて。

「あたま」だけの授業なら、この程度の議論で「はい、わかり
ました」で済んでしまうかもしれません。大人でも、議論が具体
から離れて抽象的になると妥協し
てしまうことがある。しかし、
「て」や「め」があることで、
子ども達は納得いくまで追究し
たいという姿勢を示した。

グループでの話し合いに戻っ
tたとき、自分達の武器になるもの
tを確認し、「て」で説明しよう
、納得しようと活動した。

本時のスタートの問題に戻り、
課題が解決できたか確認をした
ところ、「あたま」でわかっている
はずなのにすっきりせず、
「て」での確認をしたいと考え
ている子どもの姿が多かった。ここ
において子ども達にとって
「て・め・あたま」の重要性を
再確認した。

VI. おわりに

「て・め・あたま」を、整理し、有効に働く算数・数学科の学習指導の手だてとして確立し、広く
活用されるものにしたいという考えに立ち、また本記要が「教育実践科学研究」という立場から示し
た。

この内容は既にいろいろな機会に話をしてきているが、その折に質問されることとして「て・め・
あたま」は子どもと共有する言葉ですか」というものがある。筆者が主張するのは、教師側の指導
の手だてとしての「て・め・あたま」であり、子ども達にまでこの言葉を広めたいとは考えていない。
しかし、子ども達には、問題解決をしていく上の武器として、操作すること、図をかくこと、言語
（数式を含めて）でまとめることが獲得していってほしいと強く願っている。

注・文献
1) J．S．ブルーナー 田浦武雄・水越敏行訳(1966)：「教授理論の建築」，p68.
3) 笠井健一 (2012) ：「教科調査官が語るこれからの授業 小学校」 第3章 算数 教科調査官が
求める授業，p70.
4) 中原幸男 (1995) ：「算数・数学教育における構成的アプローチの研究」，p199，p211.