方程式の解法に見る数学基礎教育の大切さ

藤垣 佳子
岐阜聖徳学園大学教育学部

The importance of basic mathematics education in
terms of the methods for solving equations

Yoshiko FUJIGAKI

Abstract

Before university students learn specialized mathematics, they need to have learned
basic mathematics in the course of compulsory education. To learn specialized mathe-
matics, knowledge of basic mathematics and calculations are important. In this paper, we
studied the influence of likes and dislikes of mathematics regarding students’ calculatio-
n ability through questionnaires given to university students. In this study, we focused on
the calculation problems of simultaneous equations and inequality, and then sought a
connection between the likes and dislikes of mathematics and whether the answers were
correct.

Key words: simultaneous equations, inequality, calculation process, compulsory education

1. はじめに

大学における数学教育の中で、小・中学校の義務教育課程及び高等学校で習得されているべき
数学の知識を必要とする機会は多い。とりわけ、解析学の学習においては計算力が必要な場合が
多々あり、高度な知識を学ぶ前提として基礎的な計算力が必要不可欠となる。筆者は文献1)の中
で、学生アンケートを基に計算過程と計算結果の正誤性について調査を行った。その結果、連立
方程式に関する設問の正答率が予想以上に低い数値となってしまったが、その設問が文字式に関
する連立方程式であったため、文字式の苦手な学生が多い為なのか連立方程式自体が苦手な学生
が多い為なのかは結論づけることが出来なかった。また、日々の学生との会話の中で、昔か
ら数学（算数）が得意あるいは好きだという学生だけではなく、算数は苦手で中学数学から好き
になった、あるいは中学数学は苦手だったが高校数学から好きになったという発言を耳にする機
会があり、それらの経験と現在の学生達の計算力になんらかの関連があるのではないかと考えた。
好きな科目、得意な科目についてはより熱心に学んできたであろうし、内容が理解出来て問題を
きちんと解くことが出来れば好きな科目、得意な科目になる可能性が高いと考えられるからであ
る。

そこで、今回は算数・数学が好きであったかどうかについて調査をすることにし、合わせて連
立方程式等に関する計算問題について問うことで、それらの関連について調べてみることにした。
また文献1) に引き続き、順序立てて考え計算過程を正確に記すことが出来るかについても確認す
るため、自身で立式が必要となる文章題についても出題することにし、基礎的な連立方程式とさ
らに発展した不等式に関する問題、そしてそれらに関する文章題について実験を採ることにした。
現在の教育課程では連立方程式を中学数学で、不等式を高校の数Iで学習することになっているた
め、高校までの知識で解ける簡単なアンケートである旨を伝えられる様に注意し、問題を作成した。

II. 調査方法とその内容

計算問題に関するアンケートを行う際に、現在も継続して数学を勉強し計算演習を行っている
集団として、教育学部に在籍しており小学校・中学校の数学教師を目指す学生たちを対象とした。
岐阜聖徳学園大学教育学部の学生120名に協力を頼み、2014年7月に調査を行った。調査の際に、
設問1のアンケートについては結果に答えて欲しいこと、設問2以降の問題については出来る限り
計算過程を省略せずに書いて欲しい旨を伝えて、下記の様な計算問題を解いてもらった。

計算問題に関するアンケート

学籍番号（下３桁を除く） K ～～～～

以下の設問に答えて下さい。
（計算問題については計算過程を省略せずに書いて下さい。）

1. 当てはまるものを〇で囲んで下さい。
 （1）小学生のとき算数が好きでしたか。
 はい いいえ どちらでもない
 （2）中学生のとき数学が好きでしたか。
 はい いいえ どちらでもない
 （3）高校生のとき数学が好きでしたか。
 はい いいえ どちらでもない

2. 次の連立方程式を解け。
 \[
 \begin{align*}
 3x - 2y &= 5 \\
 x + 4y &= 4
 \end{align*}
 \]

3. 次の連立不等式を解け。
 \[
 \begin{align*}
 5x + 3 &\geq 2x - 7 \\
 2x + 5 &> 4(x + 1)
 \end{align*}
 \]

4. 赤と青のひもがある。青のひもを5等分して束ねると赤のひもの全長より4cm短く、青のひも
 を6等分して束ねると赤のひもの全長より2cm短い。赤と青のひもの全長を求めよ。

5. 家から駅までの道のりは2000mある。家から駅へ行くのに、しばらく分速150mで走り、途中
 から分速50mで歩く。家を出発してから30分以内に駅に到着するには、分速150mで走る道のり
 を何m以上にすれば良いか。

III. 集計結果とその分析

計算問題に関するアンケートを集計し、その結果と解答例及び誤答例についてまとめたものは
以下の通りである（白紙の解答については未解答とした）。解答について、例えば設問3で片方の
不等式のみ計算が正しい等、結果の一部のみが合っているものについては誤答として扱った。

——182——
表1 設問1に関するアンケート集計結果（回答者数120名）

<table>
<thead>
<tr>
<th></th>
<th>はい</th>
<th>いいえ</th>
<th>どちらでもない</th>
<th>いいえ+どちらでもない</th>
</tr>
</thead>
<tbody>
<tr>
<td>小学生のとき算数が好きでしたか</td>
<td>95</td>
<td>10</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>中学生のとき数学が好きでしたか</td>
<td>101</td>
<td>13</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>高校生のとき数学が好きでしたか</td>
<td>87</td>
<td>9</td>
<td>24</td>
<td>33</td>
</tr>
</tbody>
</table>

表2 設問2〜5に関するアンケート集計結果（回答者数120名）

<table>
<thead>
<tr>
<th>問題番号</th>
<th>正答</th>
<th>誤答</th>
<th>未解答</th>
<th>正答率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>108</td>
<td>12</td>
<td>0</td>
<td>90.0</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>13</td>
<td>0</td>
<td>89.2</td>
</tr>
<tr>
<td>4</td>
<td>94</td>
<td>25</td>
<td>1</td>
<td>78.3</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>18</td>
<td>1</td>
<td>84.2</td>
</tr>
</tbody>
</table>

解答例及び誤答例

2. 解答例：

\[
\begin{align*}
3x - 2y &= 5 \quad \cdots (1) \\
x + 4y &= 4 \quad \cdots (2)
\end{align*}
\]

①×2+②より, \(7x = 14, x = 2\) ③

\[
(x, y) = \left(2, \frac{1}{2} \right) \quad \cdots (答)
\]

誤答例：
- 計算間違いによるもの(9件)
 例えば \(14y = 7\) から \(y = 2\) とする
- \(x\) または \(y\) のみしか解いていない(2件)
3. 解答例:
\[
\begin{align*}
5x + 3 & \geq 2x - 7 \quad \cdots \text{①} \\
2x + 5 & > 4(x + 1) \quad \cdots \text{②}
\end{align*}
\]
①より, \(3x \geq -10, \quad x \geq -\frac{10}{3} \cdots \text{③}\)
②より, \(-2x > -1, \quad x < \frac{1}{2} \cdots \text{④}\)
③, ④より, \(-\frac{10}{3} \leq x < \frac{1}{2} \cdots \text{答}\)

4. 解答例:
赤のひもの長さ: \(x\) cm
青のひもの長さ: \(y\) cm とする。
連立方程式を立てると,
\[
\begin{align*}
\frac{y}{5} - 4 &= x \quad \cdots \text{①} \\
\frac{y}{6} + 2 &= x \quad \cdots \text{②}
\end{align*}
\]
① = ② を解いて,
\[
\frac{y}{30} = 6, \quad y = 180
\]
②より,
\[
x = \frac{180}{6} + 2, \quad x = 32
\]
以上より, 赤のひもの全長: 32 cm 青のひもの全長: 180 cm ･･･ \text{答}

5. 解答例:
走る道のりを \(x\) m とすると,
\[
\frac{x}{150} + \frac{2000 - x}{50} \leq 30
\]
この不等式を解く。分母をはらうと,
\[
x + 3(2000 - x) \leq 150 \times 30
\]
\[
x - 3x \leq 150 \times 30 - 3 \times 2000
\]
\[
x \geq \frac{4500 - 6000}{-2} = \frac{1500}{2} = 750
\]
以上より, 走る道のりは 750 m 以上 ･･･ \text{答}

上記集計結果の中で、設問 1 においては「いいえ・どちらでもない」を選んだ学生が思いのほか多い。アンケート対象者によって結果が変わると考えられるが、教員を目指す学生達が対象であることを考えるとやや驚く結果となった。おそらく小・中学校時代に算数や数学が長く分からな
い、面白くない、難しいと感じる機会を自身が経験したことで、逆に教員を目指そうとする学生が少なからずいるということを示しているのではないか。

設問２～5の正答率については、設問４の正答率が最も低い。また一番正答率が高い設問２についても正答率が90％であり、1割の不正解が出る結果となった。しかしながら誤答例でも述べたとおり、設問２及び３における不正解の殆どが簡単な計算間違いによるものであり、少し注意をして計算を進めることができれば減らせるであろう間違いばかりであった。この結果から大半の学生は基本的な連立方程式・不等式の解法の知識を身に付けており、いわゆるケアレスミスを減らすことが出来れば正答率はかなり良くなると考えられる。

設問５については高等学校の数Ⅰの教科書3)で頻繁に学習していることもあり、文章問題ではあるが設問４よりも正答率が高かった。誤答の中に式自体が立てられなかったものは少なく、計算間違いをする解答が目立った。この計算間違いについては、分母を払う際の間違いが多いことに注視する必要があるだろう。小学生の段階から分数の計算に苦手意識を持つものもあり、こういった計算にはさらに練習を必要とする学生が居ると感じる。また、問われている道のりではなく時間を変数として不等式を通してものもあり、こちらは文章が明確に認めていない読解力の問題であると感じた。正答・誤答に関して全体的に数直線を用いて文章を分かりやすくまとめると、式を立てよとする解答が多く見られた。

最も正答率の低かった設問4については、式は立てられたものの通分の計算間違い等の計算ミスが目立ったが、それ以上に式自体の立て方が間違っているものも多数見られた。文章が明確に認めていないものが多く、等式のプラス・マイナスの符号が逆になっていたり、異なる関係式を作る解答も見られた。連立方程式自体は解くことが出来るが、文章から説意を読み取る立式するの苦手なものが多かったことが明確に表れている。読解力をつけて、基礎的な知識が応用出来る力を全体としてさらに伸ばす必要性を感じた。

データーの集計を行ううちに、数学（算数）が好きだったかを問う設問１と設問２以降の計算問題に関する解答の正誤に何等かの関連があるのではないかと考えた。そこで、表２における正答率の集計結果を、設問１においていえもどちらものも選んだ学生に絞ってまとめ直すことになった。ここでは正答率ではなく誤答率でまとめることにして、以下の結果が得られた。

<table>
<thead>
<tr>
<th>表３（いいえ・どちらでもない）を選んだ学生の各設問における誤答率（回答者数120名中）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>全体の誤答率（表２より）</td>
</tr>
<tr>
<td>小学校算数 いいえ・どちらでもない</td>
</tr>
<tr>
<td>中学校数学 いいえ・どちらでもない</td>
</tr>
<tr>
<td>高校数学 いいえ・どちらでもない</td>
</tr>
</tbody>
</table>

—185—
図2 各設問における誤答率

上記表より特記できることは、小学校・中学校で（いいえ・どちらでもない）を選んだ学生の誤答率が全体での割合に比べてかなり上がっているという結果である。特に、設問4・5に関してはその傾向が顕著に表れており、設問4の場合では全体での誤答率21.7%に対して小学校・中学校で（いいえ・どちらでもない）を選んだ学生の誤答率はそれぞれ44%及び47.4%であった。高校で（いいえ・どちらでもない）を選んだ学生の誤答率は、全体での割合と比べて特に変化が無いかあるいは逆に少なくなっている。今回出題した問題に関しては、小学校算数・中学校数学の基礎的な計算力が必要となることもあり、小学校・中学校時代の算数・数学の好き嫌いが解答の正答率に強く関わっていることが分かる。

設問4について、明確に算数・数学の好き嫌いが解答の正答率に関わっているかを判断する為に、有意水準5%でχ²検定（独立性の検定）を行ったところ、次のような結果が得られた。

算数・数学の好き嫌いと設問4の正誤に関するかどうかを検定する。以下の表において縦欄の正、誤は設問4の正答・誤答者数を表し、横欄のはい、いいえ・どちらでもないは設問1における算数・数学好きであったかの回答者数を表す。Oを実測度数（Observed frequency）、Eを期待度数（Expected frequency）とする。
仮説：算数・数学の好き嫌いと設問４の正答に関する関係が無い

小学校算数の場合

<table>
<thead>
<tr>
<th></th>
<th>はい</th>
<th>いいえ・どちらでもない</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>80</td>
<td>14</td>
<td>94</td>
</tr>
<tr>
<td>誤</td>
<td>15</td>
<td>11</td>
<td>26</td>
</tr>
<tr>
<td>計</td>
<td>95</td>
<td>25</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>はい</th>
<th>いいえ・どちらでもない</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>74.4</td>
<td>19.6</td>
<td>94</td>
</tr>
<tr>
<td>誤</td>
<td>20.6</td>
<td>5.4</td>
<td>26</td>
</tr>
<tr>
<td>計</td>
<td>95</td>
<td>25</td>
<td>120</td>
</tr>
</tbody>
</table>

\[
x^2 = \sum \frac{(0 - E)^2}{E} = \frac{(80 - 74.4)^2}{74.4} + \frac{(14 - 19.6)^2}{19.6} + \frac{(15 - 20.6)^2}{20.6} + \frac{(11 - 5.4)^2}{5.4} \\
\approx 0.422 + 1.6 + 1.522 + 5.807 \\
= 9.351 > 3.841
\]

仮説を棄却する

高校数学の場合

<table>
<thead>
<tr>
<th></th>
<th>はい</th>
<th>いいえ・どちらでもない</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>66</td>
<td>28</td>
<td>94</td>
</tr>
<tr>
<td>誤</td>
<td>21</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>計</td>
<td>87</td>
<td>33</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>はい</th>
<th>いいえ・どちらでもない</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>正</td>
<td>68.15</td>
<td>25.85</td>
<td>94</td>
</tr>
<tr>
<td>誤</td>
<td>18.85</td>
<td>7.15</td>
<td>26</td>
</tr>
<tr>
<td>計</td>
<td>87</td>
<td>33</td>
<td>120</td>
</tr>
</tbody>
</table>

\[
x^2 = \sum \frac{(0 - E)^2}{E} = \frac{(66 - 68.15)^2}{68.15} + \frac{(28 - 25.85)^2}{25.85} + \frac{(21 - 18.85)^2}{18.85} + \frac{(11 - 7.15)^2}{7.15} \\
\approx 0.068 + 0.179 + 0.245 + 0.647 \\
= 1.139 < 3.841
\]

仮説を棄却することが出来ない

上記における\(x^2\)の値の棄却域は、有意水準5%で自由度1より、\(x^2\)分布表から\(x^2(0.05) = 3.841\)以上となる。データー数の関係で中学校数学については正しい検定が難しいため、小学校算数と高校数学に関する回答を基に計算を行った。結果として、小学校算数が好きではなかったと回答した場合、設問4を間違い易い傾向にあり、高校数学が好きではなかったと回答した場合でも、設問4の正答率には関係の無いことが分かった。これにより、数学の基礎としての算数の勉強が非常に大切であると言えるだろう。

IV、まとめ

中央教育審議会答申における近年の算数・数学科改善の基本方針の中に、次のような一節が含まれている。“子どもたちが算数・数学を学ぶ意欲を高めたり、学ぶことの意義や有用性を実感したりできるようにすることが重要である。そのために、学習し身に付けたものを、日常生活や他教科等の学習、より進んだ算数・数学の学習へ活用していくことを重視する。”

子どもの理数科離れ対策として、文科省も様々な対策を講じ始めている。教師の人員補充や教育環境設備充実の推進等、今後も新しいプランが増えてくるかもしれないが、現在の教育現場でのさらなるきめ細やかな対応も重要になっているだろう。義務教育課程における算数・数学嫌いの子どもが少しずつでも減少していくことを期待したい。これからも教育が教育の現状を把握し互いに情報共有することで、より良い教育が行われることを願っている。今回は連立方程式及び
不等式に関して調査を行ったが、機会があればまた別の問題に関しても調査及び考察を行っていきたいと考える。

注・文献
1）藤垣佳子（2014）: 計算過程の重要性-文字式と指数・分数の問題について-, 教育実践科学研究センター紀要, 第13号, 201-206。
2）文部科学省（2008）: 「中学校学習指導要領解説 数学編」, 文部科学省。
3）文部科学省（2009）: 「高等学校学習指導要領解説 数学編」, 文部科学省。
4）大島利雄他（2011）: 「数学Ⅰ」, 数研出版。